36,144 research outputs found

    Radiation tolerant silicon nitride insulated gate field effect transistors

    Get PDF
    Metal-Insulated-Semiconductor Field Effect Transistor /MISFET/ device uses a silicon nitride passivation layer over a thin silicon oxide layer to enhance the radiation tolerance. It is useful in electronic systems exposed to space radiation environment or the effects of nuclear weapons

    Knowledge-based simulation

    Get PDF
    An architecture for a knowledge-based simulator is described. The task of scheduling represents an area in which such a tool might be applied. More specifically, scheduling for crew and ground support activities for the shuttle and space station would benefit from the application of knowledge-based simulation. The knowledge-based simulator would allow the crew and support personnel to schedule and reschedule activities in a timely and flexible manner in order to examine and test possible plans

    Recent experiences with three-dimensional transonic potential flow calculations

    Get PDF
    Some recent experiences with computer programs capable of solving finitie-difference approximations to the full potential equation for the transonic flow past three dimensional swept wings and simple wing-fuselage combinations are discussed. The programs used are a nonconservative program for swept wings, a quasi-conservative finite-volume program capable of treating swept wings mounted on fuselages of slowly varying circular cross section, and a fully conservative finite volume scheme capable of treating swept wings and wing-cylinder combinations. The present capabilities of these codes are reviewed. The relative merits of the conservative and nonconservative formulations are discussed, and the results of calculations including corrections for the boundary-layer displacement effect are presented

    Numerical design of streamlined tunnel walls for a two-dimensional transonic test

    Get PDF
    An analytical procedure is discussed for designing wall shapes for streamlined, nonporous, two-dimensional, transonic wind tunnels. It is based upon currently available 2-D inviscid transonic and boundary layer analysis computer programs. Predicted wall shapes are compared with experimental data obtained from the NASA Langley 6 by 19 inch Transonic Tunnel where the slotted walls were replaced by flexible nonporous walls. Comparisons are presented for the empty tunnel operating at a Mach number of 0.9 and for a supercritical test of an NACA 0012 airfoil at zero lift. Satisfactory agreement is obtained between the analytically and experimentally determined wall shapes

    The electrical conductivity of a collisionless magnetoplasma in a weakly turbulent magnetic field

    Get PDF
    Electrical conductivity of collisionless magnetoplasma in nearly turbulent magnetic fiel

    Input description for Jameson's three-dimensional transonic airfoil analysis program

    Get PDF
    The input parameters are presented for a computer program which performs calculations for inviscid isentropic transonic flow over three dimensional airfoils with straight leading edges. The free stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where they occur in the flow. The finite difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane

    Comparison of interference-free numerical results with sample experimental data for the AEDC wall-interference model at transonic and subsonic flow conditions

    Get PDF
    Numerical results obtained from two computer programs recently developed with NASA support and now available for use by others are compared with some sample experimental data taken on a rectangular-wing configuration in the AEDC 16-Foot Transonic Tunnel at transonic and subsonic flow conditions. This data was used in an AEDC investigation as reference data to deduce the tunnel-wall interference effects for corresponding data taken in a smaller tunnel. The comparisons were originally intended to see how well a current state-of-the-art transonic flow calculation for a simple 3-D wing agreed with data which was felt by experimentalists to be relatively interference-free. As a result of the discrepancies between the experimental data and computational results at the quoted angle of attack, it was then deduced from an approximate stress analysis that the sting had deflected appreciably. Thus, the comparisons themselves are not so meaningful, since the calculations must be repeated at the proper angle of attack. Of more importance, however, is a demonstration of the utility of currently available computational tools in the analysis and correlation of transonic experimental data

    Conservative versus nonconservative differencing: Transonic streamline shape effects

    Get PDF
    Streamline patterns calculated from transonic flow solutions which were generated using a nonconservative finite difference scheme showed a net streamtube area increase far downstream of the disturbance indicating that the global mass balance was destroyed. Similar calculations using a conservative finite difference scheme did not show this defect. Comparative calculations were made at several free-stream Mach numbers for nonlifting flow over a 10% parabolic arc airfoil. In a transonic internal flow, this nonconservation of mass may be of greater concern than in an unconfined external flow

    Deep Inelastic Lepton-Nucleon Scattering at HERA

    Full text link
    Data from the HERA collider experiments, H1 and ZEUS, have been fundamental to the rapid recent development of our understanding of the partonic composition of the proton and of QCD. This report focuses on inclusive measurements of neutral and charged current cross sections at HERA, using the full available data taken to date. The present precision on the proton parton densities and the further requirements for future measurements at the Tevatron and LHC are explored. Emphasis is also placed on the region of very low Bjorken-x and Q^2. In this region, the `confinement' transition takes place from partons to hadrons as the relevant degrees of freedom and novel or exotic QCD effects associated with large parton densities are most likely to be observed. Finally, prospects for the second phase of HERA running are discussed.Comment: 13 pages, 15 figures, to appear in Proceedings of the XXI International Symposium on lepton and Photon Interactions at High Energies, Fermilab, August 200
    corecore